On the Smallest k Such That All $k \cdot 2^{N} + 1$ Are Composite

By G. Jaeschke

Abstract. In this note we present some computational results which restrict the least odd value of k such that $k \cdot 2^n + 1$ is composite for all $n \ge 1$ to one of 91 numbers between 3061 and 78557, inclusive. Further, we give the computational results of a relaxed problem and prove for any positive integer r the existence of infinitely many odd integers k such that $k \cdot 2^r + 1$ is prime but $k \cdot 2^v + 1$ is not prime for v < r.

Sierpinski's Problem. In 1960 Sierpinski [4] proved that the set S of odd integers k such that $k \cdot 2^n + 1$ is composite for all n has infinitely many elements (we call them 'Sierpinski numbers'). In his proof Sierpinski used as covering set Q_0 the set of the seven prime divisors of $2^{64} - 1$ (a 'covering set' means here a finite set of primes such that every integer of the sequence $k \cdot 2^n + 1$, n = 1, 2, ..., is divisible by at least one of these primes). All Sierpinski numbers with Q_0 as covering set have at least 18 decimal digits; see [1]. Therefore, the question arises whether there exist smaller Sierpinski numbers $k \in S$. Several authors (for instance [2], [3]) found Sierpinski numbers smaller than 1000000 which are listed in Table 1 together with their coverings. Thus, the smallest Sierpinski number known up to now is k = 78557.

For the discussion whether 78557 is actually the smallest Sierpinski number k_0 , we define for every odd integer the number ω_k as follows (U = set of odd integers):

(1)
$$\omega_k = \infty \qquad \text{for } k \in S, \\ \omega_k = \min\{n \mid k \cdot 2^n + 1 \text{ is prime}\} \quad \text{for } k \in U - S.$$

Let R be the set of all odd integers k < 78557. We inspected all values $k \in R$ in order to determine ω_k . It turned out that

$$\omega_k \ge 100$$
 only for 1002 elements $k \in R$,
 $\omega_k \ge 1000$ only for 178 elements $k \in R$.

These 178 odd integers k are listed together with ω_k (as far as it is known) in Table 2. The test range for the exponent ω_k for the numbers k > 10000 in Table 2 was $\omega_k \leq 3900$. In this table the results of the previously published paper of Baillie, Cormack and Williams [1] are included. So there remain only 90 odd integers k < 78557 that need to be tested further. Table 2 contains 33 new primes of the form $k \cdot 2^n + 1$ with $n \ge 2000$.

A further open question is whether the above-mentioned 11 Sierpinski numbers are the only ones < 1000000.

Received May 16, 1978; revised November 17, 1981 and June 21, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 10A25, 10A40.

G. JAESCHKE

TABLE 1

Sierpinski numbers less than 10⁶

Sierpinski number	Covering set
78557	Q_1
271129	Q_2
271577	Q_2
327739	Q_4
482719	Q_2
575041	Q_2
603713	Q_2
808247	Q_1
903983	Q_2
934909	Q_3
965431	\widetilde{Q}_2
with	
$O_1 = \{3, 5, 7,$	13, 19, 37, 73 }

 $Q_1 = \{3, 5, 7, 13, 19, 37, 73\}$ $Q_2 = \{3, 5, 7, 13, 17, 241\}$ $Q_3 = \{3, 5, 7, 13, 19, 73, 109\}$ $Q_4 = \{3, 5, 7, 13, 17, 97, 257\}$

The main part of the calculations reported in this note was performed on an IBM/370 System, Model 158 at the IBM Heidelberg Scientific Center.

Related Problems. In the following we shall discuss two results which are closely related to the problem stated in the title of this paper.

Result 1. The smallest integer k such that all numbers $k \cdot 2^n + 1$ and $k + 2^n$ are composite belongs to the following set C of cardinality 17:

$$C = \{5297, 5359, 7013, 19249, 28433, 32161, 39079, 44131, 47911, \\48833, 60443, 62761, 67607, 74191, 75841, 77899, 78557\}$$

For all $k \in C$ no prime of the form $k + 2^n$ with $n \le 100$ has been found. Thus, if any $k \in C$ has a covering set (with respect to the sequence $k \cdot 2^n + 1$) where all primes are less than 2^{100} , then all numbers $k + 2^n$ are composite (see [5]).

Result 2. The second result is a theorem on the numbers ω_k defined above.

THEOREM. For any positive integer r there exist infinitely many odd numbers k such that $\omega_k = r$.

Proof. Assume $r \ge 2$, since for r = 1 all k = (p - 1)/2 with $p \equiv 3 \mod 4$ yield $\omega_k = 1$. Let T_r denote the set of primes that divide $2^r + 1$ or $2^{\rho} - 1$ for some ρ with $2 \le \rho \le r$, let $Q_r = \{p_1^{(r)}, \ldots, p_{r-1}^{(r)}\}$ consist of the r - 1 smallest odd primes not belonging to T_r , and let w_r be the product of the primes in Q_r and the prime divisors of $2^r + 1$. Let further x_0 be the smallest positive solution x to the following system of congruences:

(2)
$$x \equiv 1 \mod \prod_{p \mid 2^r + 1} p$$

 $x \cdot 2^v + 2^{v-1} + 1 \equiv 0 \mod p_{v-1}^{(r)}, v = 2, \dots, r.$

k	ω_k	k	ω_k	k	ω_k	k	ω_k
383	6393	19249		40571	1673	60829	
881	1027	20851		41809	1402	61519	1290
1643	1465	21143	1061	42257	2667	62093	
2897	9715	21167		42409	1506	62761	
3061		21181		43429		63017	
3443	3137	21901	1540	43471	1508	63379	2070
3829	1230	22699		44131		64007	
4847		22727	1371	44629	1270	64039	2246
4861	2492	22951	1344	44903		65057	
5297		23701	1780	45713	1229	65477	
5359		23779		45737	2375	65539	1822
5897		24151	2508	46157		65567	
6319	4606	24737		46159		65623	1746
6379	1014	24769	1514	46187		65791	2760
7013		24977	1079	46403	3057	65971	1224
7493	5249	25171	2456	46471		67193	
7651		25339	2150	47179	2918	67607	
79091	2174	25343	1989	47897		67759	
7957	5064	25819		47911		67831	1720
8119	1162	25861		48091	1476	67913	
8769	1150	26269	1086	48323	1369	68393	1901
8473		2020)	1000	48923		69107	
85/3	5703	27033		40055		69109	
8070	1966	28/33				70261	3048
0323	3013	20433	1498	50693		71417	
10223	5015	30091	2184	51617	2675	71671	
10223	2689	31951	3084	51917	2075	71869	
10067	2089	32161	5004	52771		72197	2171
11027	1075	32303		52909	3518	73189	
11/27	1702	323731	1720	53941	5510	73253	
12305	1111	33661	1720	54001		73849	1202
12595	2435	34037	1671	54730		74101	1202
12007	1655	34565	3361	54767		74221	
12797	1055	34711	5501	55450		74260	
14027		34000		56543	2501	74050	
14027	2424	25087	2705	56731	1172	75841	
16917	5454	26791	2195	56867	1172	76261	2156
16097	2748	26082		57647	127	76759	2150
10907	2740	27561		57503	1239	76969	3702
17507	2700	37501	2778	57040	1058	70909	5702
17670	1004	30029	2//0	58712	1126	77241	
17029	2700	39079	1120	50560	1150	77521	2226
19107	2700	20701	1120	60442		77800	3330
1010/		37/01		60541		70101	
18203	2(00	40547	1077	60341	1411	/0101	
19021	2008	40333	1077	00/3/	1411		

TABLE 2Primes $k \cdot 2^{\omega_k} + 1$ with k < 78557 and $\omega_k \ge 1000$

Define P_r to be the set of all primes

 $p \equiv x_0 \cdot 2^{r+1} + 2^r + 1 \mod w_r \cdot 2^{r+1}.$

Then we show

- (3) P_r is infinite,
- (4) for every $p \in P_r$ we have $\omega_{(p-1)/2}r = r$.

In order to prove (3) we have only to show that $w_r 2^{r+1}$ and $x_0 \cdot 2^{r+1} + 2^r + 1$ are coprime since then (3) follows from Dirichlet's Prime Number Theorem. If q were a common divisor of these 2 numbers, we would have

(5)
$$w_r \equiv 0 \mod q$$

and

(6)
$$x_0 \cdot 2^{r+1} + 2^r + 1 \equiv 0 \mod q.$$

We distinguish two cases with respect to (5):

(a) $q | 2^r + 1$. Then we have $2^r + 1 \equiv 0 \mod q$. Hence by (6) $x_0 \equiv 0 \mod q$, which contradicts the first congruence in (2).

(b) $q \in Q_r$. Then we have $q = p_{v-1}^{(r)}$ for some v with $2 \le v \le r$ and therefore $x_0 \cdot 2^v + 2^{v-1} + 1 \equiv 0 \mod q$. If this congruence is multiplied by 2^{r+1-v} , we obtain $x_0 \cdot 2^{r+1} + 2^r + 2^{r+1-v} \equiv 0 \mod q$, and by means of (6) $2^{r+1-v} \equiv 1 \mod q$ and $q \mid 2^{r+1-v} = 1$, which contradicts the definition of Q_r . Thus, the infinity of P_r is proved.

In order to prove (4) let p be a prime, $p = x_0 \cdot 2^{r+1} + 2^r + 1 + \lambda w_r \cdot 2^{r+1}$ with $\lambda \ge 1$ and $k = (p-1)/2^r$. Then $k \cdot 2^r + 1$ is prime, hence $\omega_k \le r$. If we had $1 \le \mu = \omega_k < r$, then $k \cdot 2^{\mu} + 1$ would be a prime and this would produce a contradiction as follows. From $k \cdot 2^r + 1 = p = x_0 \cdot 2^{r+1} + 2^r + 1 + \lambda w_r \cdot 2^{r+1}$ it follows that $k = 2x_0 + 1 + 2\lambda w_r$, hence $k \cdot 2^{\mu} + 1 = x_0 \cdot 2^{\mu+1} + 2^{\mu} + \lambda w_r \cdot 2^{\mu+1} + 1 = x_0 \cdot 2^{\nu} + 2^{\nu-1} + 1 + \lambda w_r \cdot 2^{\nu}$ for $v = \mu + 1$, therefore $2 \le v \le r$. But then we have $k \cdot 2^{\mu} + 1 \equiv 0 \mod p_{\nu-1}^{(r)}$ by (2) and $k \cdot 2^{\mu} + 1$ is not prime. Thus, $\omega_k = r$.

Acknowledgements. The author would like to thank his colleague H. Eberle for valuable comments in editing this paper, and M. Bergen and U. Schauer for their programming assistance.

IBM Scientific Center Heidelberg, West Germany

1. R. BAILLIE, G. CORMACK & H. C. WILLIAMS, "The problem of Sierpinski concerning $k \cdot 2^n + 1$," Math. Comp., v. 37, 1981, pp. 229–231. Corrigenda, Math. Comp., v. 39, 1982, p. 308.

2. N. S. MENDELSOHN, "The equation $\phi(x) = k$," *Math. Mag.*, v. 49, 1976, pp. 37–39.

3. J. L. SELFRIDGE, "Solution to problem 4995," Amer. Math. Monthly, v. 70, 1963, p. 101.

4. W. SIERPINSKI, "Sur un probleme concernant les nombres $k \cdot 2^n + 1$," *Elem. Math.*, v. 15, 1960, pp. 73–74.

5. R. G. STANTON & H. C. WILLIAMS, Further Results on Coverings of the Integers $1 + k \cdot 2^n$ by Primes, Lecture Notes in Math., vol. 884, Combinatorial Mathematics VIII, pp. 107–114, Springer-Verlag, Berlin and New York, 1980.